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The properties of one-dimensional, weakly nonlinear electromagnetic solitary waves in a plasma are
investigated. The solution of the resulting eigenvalue problem shows that the solitary waves have ampli-
tudes which are allowed discrete values only and their vector and scalar potentials are proportional to
w, /oy and (o, /®,)?, respectively, where , and w, are the plasma and electromagnetic wave frequen-
cies, respectively. Their widths are comparable to the plasma wavelength A, =2mc /w, (where c is the
velocity of light), except for the lowest-order solitary wave, whose width is large compared with A,
which is a true wakeless solitary wave only in the limit of vanishing amplitude. Simple analytical solu-
tions are derived for higher-order solitary waves, whose vector-potential envelope is highly oscillatory,
and are shown to consist, in the group-velocity frame, of two trapped, oppositely traveling waves.

PACS number(s): 52.35.Mw, 52.35.Sb, 52.40.Db, 52.40.Nk

I. INTRODUCTION

A high-power laser pulse propagating through a plas-
ma produces a wide variety of interesting phenomena.
These include plasma wake-field generation, relativistic
self-focusing, frequency shifts, and harmonic generation
[1-7]. Another important area of nonlinear laser-plasma
phenomena, and more generally, nonlinear electromag-
netic wave-plasma phenomena, which has received inade-
quate attention, is that of solitary waves. Gersten and
Tzoar [8], Tsintsadze and Tskhakoya [9], and Yu, Shuk-
la, and Spatschek [10] have investigated electromagnetic
solitary waves in a plasma in the quasineutrality approxi-
mation i.e., the charge separation due to excitation of the
longitudinal plasma wave by the ponderomotive force
was neglected. Rao, Varma, Shukla, and Yu [11] includ-
ed charge separation but considered only solitary waves
whose speed is comparable to the ion-acoustic speed, i.e.,
both electron temperature and ion motion are important.
We consider here, however, the regime in which the soli-
tary wave speed is close to the velocity of light ¢, the elec-
tron temperature is negligible because the directed
motion of the electrons is assumed to be much larger
than the thermal motion, and the ion motion is negligible
because the pulse length / is sufficiently short to satisfy
wpl/c <<1, where o, is the ion plasma frequency.
Moreover, charge separation is not neglected. Indeed,
the solitary wave solutions we obtain would not exist
without the charge separation produced by the nonlinear
coupling of the transverse electromagnetic wave to the
longitudinal plasma wave. Electromagnetic solitary
waves in the regime considered here have also been inves-
tigated by Koslov, Litvak, and Suvorov [12] and Kaw,
Sen, and Katsouleas [13]. Both of these investigations
consist primarily of the study of the properties of intense,
strongly nonlinear electromagnetic pulses in which the
particle oscillation velocities are comparable with the ve-
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locity of light. In the present work, however, the focus is
on weakly nonlinear pulses wherein the electron motion
is only weakly relativistic. In that case the coupled equa-
tions governing the pulse behavior are considerably
simpler than in the strongly nonlinear case. Because of
this, several general properties regarding pulse length,
amplitude, and speed of weakly nonlinear solitary waves
emerge naturally from the analysis which are not ap-
parent from the more general equations valid for strongly
nonlinear pulses. Moreover, although in general the
governing equations must be solved numerically, a simple
approximate analytical solution is derived for the case in
which the vector potential envelope is highly oscillatory.
Thus, the present work complements the strongly non-
linear results of Refs. [12] and [13].

II. ANALYSIS

To lowest order, the normalized vector and scalar po-
tentials of a linearly polarized, weakly nonlinear laser
pulse in a plasma are governed by the coupled equations
(14]

2i40+Q2 4 +Q2eF 4V =0, 1
Pt QP =02 417, )

where A(! is the first-order vector-potential envelope
normalized (in SI units) to myc /e, and ¢’ is the second-
order scalar potential normalized to m,c?/e, where m,
e, and c are the electron rest mass and charge and the ve-
locity of light, respectively. The complete representation
of the potentials are [14]

4= i § €™ A{™(E,T)explilB) , 3)
m=1]l=—o

p=3 3 edmAEIexplild) , @
m=2[l=—o
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and
E=e(Z—T), 1=€'T, 6=Z—Q,T . (5)

The normalized spatial coordinate and time are defined
by Z =kyz and T =k ct, where z is the spatial coordi-
nate, t is the time, and k, is the carrier wave number in
the absence of any nonlinear interaction with the plasma.
The normalized wave number, frequency, and plasma fre-
quency are defined by K =k/k,, Q=w/kyc, and
Qp =, /kge. In terms of these variables, the linear
dispersion relation is

Q*=K*+Q2 . 6

Because of this normalization, the normalized fundamen-
tal laser wave number is K,=1, and in Eq. (5), the corre-
sponding normalized frequency , and group velocity Q;
based on the linear dispersion relation (6) are given by
Q=QK=1=(1+Q2)""? and Q;=(30/3K)g—,
=0, !. The expansions (3) and (4), and the resulting Egs.
(1) and (2) are based on the assumption that the lowest-
order vector potential and the normalized plasma fre-
quency (2, are of order €, which is the formal expansion
parameter.

The solution of Egs. (1) and (2) is simplified if the vari-
ables are scaled according to

A4,=41"/9,, ©,=¢F /0%, )

§'=Q,¢, 'r’=ﬂf,1- , (8)
whereby Egs. (1) and (2) become

2idy,+ App+0,4,=0, 9)

Qe+ @ =4[, (10)

which are independent of (1,. We look for solitary wave
solutions of the form

A ((&,7)=R (& )exp(iAT' /2) , (11)

where R (&) is real and A is a real constant correspond-
ing physically to a frequency shift. Equations (9) and (10)
become

Rige+(®,— AR, =0, (12)
Dpep+ D, =R} . (13)

Within the framework of Egs. (12) and (13) it may be
verified that, as in the strongly nonlinear case treated in
Ref. [12], two types of solitary waves are possible. Type I
has symmetrical R; and @, as defined by
R, (E)=R,(—&'), PyE')=D,(—E&'), whereas type II has
antisymmetric R,; and symmetric &, defined by
R,(&)=—R,(—&), O&')=Dy(—¢&'). In order to find
these solitary wave solutions, which must satisfy R,
®,—0 as |&'| — o0, it is noted that, for sufficiently large
positive & where ®,<<A, the proper asymptotic solu-
tions of Egs. (12) and (13) are R; =Cexp(—A!/%£’) and
®,=C2(4A+1) lexp(—2A'%¢’), where C, is a con-
stant. The numerical procedure is to start the solution at
large positive £’ with these exponential forms for R; and
&, and then integrate the system (12) and (13) in the neg-

ative £’ direction until some point £’ is found where both
dR,/d&" and d®,/d &’ vanish simultaneously (type-I soli-
tary wave), or R, and d®,/d§&' vanish simultaneously
(type-II solitary wave). It was found numerically that
these conditions occur only for particular values of A,
i.e., A is the eigenvalue and the corresponding R, and ¥,
are the eigenfunctions. Figures 1 and 2 show the first
nine eigenfunctions of both R, and ®,, where N denotes
the number of half cycles of R,. Table I shows the eigen-
values A for the first nine solitary waves. It is evident
that the vector-potential eigenfunctions become increas-
ingly oscillatory with increasing eigenvalue, whereas the
scalar potential eigenfunctions are typically bell-shaped
with a single maximum. Also, the amplitudes of both
vector and scalar potentials increase with increasing ei-
genvalue. These properties are qualitatively similar to
those of the strongly nonlinear regime [12,13]. It should
be emphasized, however, that for the weakly nonlinear
regime considered here, Figs. 1 and 2 represent universal
curves for solitary wave profiles valid for arbitrary
Q,=w,/kic=~w,/wy<<1. To obtain the actual normal-
ized vector- and scalar potential profiles, it is only neces-
sary to multiply the ordinates in Figs. 1 and 2 by Q, and
Q;, respectively, because of the scaling given by Eq. (7).
This simple scaling does not exist in the strongly non-
linear case.

R (¢)

R(&) ol ()

4 -3 -2 -1 0 1 2 3 4 5
€' = kp(z — vyt)

FIG. 1. Normalized vector-potential envelope R(£’) for (a)
type-I solitary wave (even symmetry) and (b) type-II solitary
wave (odd symmetry).
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TABLE 1. Eigenvalues A for the lowest nine electromagnetic
solitary waves.

=z

A

0.00
0.50
0.975
1.47
2.00
2.55
3.13
3.70
4.28
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Several other interesting properties of these elec-
tromagnetic solitary waves in a plasma are apparent from
Figs. 1 and 2. From the definition of &’ given by Eq. (8),
it follows that §'=k,(z —v,t), where the plasma wave
number is k, =w, /c =2m/A,, the linear group velocity is
vg=c/(1 +w12, /k3c¢?)!/?, and z and t are the (unnormal-
ized) spatial coordinate and time, respectively. It is evi-
dent from Figs. 1 and 2 that each solitary wave (except
the N =1 case discussed subsequently) has a width given
approximately by A§'=k,Az~6. Therefore, except for
the N =1 case, every weakly nonlinear, one-dimensional,
electromagnetic solitary wave in a plasma has a spatial
width Az which is comparable to the plasma wavelength
A,, which clearly show the important role which the
(nonlinear) coupling of the laser pulse to the longitudinal
plasma wave plays in the existence of these solitary wave
solutions. It may also be noted that the condition
a)piAz /c << 1, necessary for the neglect of ion motion, is
satisfied because Az~A,=2wc/w, and therefore
w,Az/c=~(m,/m;)""? <<1. The N =1 solitary wave is
the only solution whose width is large compared with the
plasma wavelength. In this case, the quasineutrality con-
dition |®,e| <<®, applies, so that Eq. (10) gives
®,~|A4,|?, whereby Eq. (9) becomes the nonlinear
Schrodinger (NLS) equation,

2id,+ Appt|A4,174,=0, (14)
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FIG. 2. Normalized scalar potential ®,(£’) corresponding to
the vector potential of Fig. 1.

whose simplest solitary wave solution is
A= Agsech( AyE /2 )expli A3 /4) , (15)

where A, is an arbitrary constant. Comparison of Eq.
(11) with Eq. (15) shows that for this case the eigenvalue
is A= A(z,/2. It is interesting to note, however, that for
large negative &’ the solution of Eq. (10) with 4, given by
Eq. (15) is ®,=—4mexp(—m/2'24,)sin(£’'), which
represents the wake of longitudinal plasma oscillations
left behind the laser pulse. Because a solitary wave must,
by definition, vanish for |£'|— o, (i.e., it must be wake-
less), it follows that, in a strict mathematical sense, Eq.
(15) represents a true solitary wave only in the limit
A=A (2, /2—0, i.e., it must have vanishing amplitude and
infinite width. Because of this, Table I gives A=0 and
Fig. 1(a) shows R;=0 for the N =1 case. Of course,
from a less rigorous point of view, Eq. (15) does represent
a long-pulse solitary wave (width >>A,) whose wake can
be made negligibly small if A4 is sufficiently small.

A distinctive property of the solitary wave solutions of
Egs. (9) and (10) is that, for each eigenvalue A, both the
shape and amplitude of the corresponding eigenfunction
is completely determined. This property differs from that
of several well-known nonlinear equations, such as the
NLS equation or the Korteweg-—de Vries equation which
allow solitary wave solutions with a continuous range of
amplitude. For example, the solitary wave solution (15)
of the NLS equation (14) is valid for arbitrary values of
the amplitude A4, i.e., the shape is determined but the
amplitude is arbitrary. Thus, the discrete amplitudes al-
lowed by Eqgs. (9) and (10) are in contrast to the continu-
ous amplitude range of solitary waves allowed by several
well-known nonlinear equations. This discrete amplitude
property is also found in the strongly nonlinear case
[12,13].

The previous analysis focuses on the lowest-order vec-
tor and scalar potentials. The next-higher-order contri-
butions in the series (3) and (4) involve 4‘? and ¢}*
which are governed by Egs. (61) and (66) of Ref.
[14], which, with the definitions A,=A4{ /02
=R,(&)exp(iAT'/2) and <I>3=¢E,3)/QI3,, can be written as

R2§'§'+(¢2_A)R2:_iARlé—/—<I)3R1 > (16)

®yep+ Dy =R (R, +R3) . 17

Letting R, =a,+if3,, where a, and 3, are real, Egs. (16)
and (17) yield

a2§'§-+(¢2—A)a2:—¢3R1 N (18)
Breet+(®,—A)By=—AR ¢ , (19)
(I>3§:§:+‘I>3=2R1a2 . (20)

A solution of Egs. (18) and (20) is a,=®;=0. The solu-
tion of Eq. (19) can be shown to be B,=—A&'R,/2,
whereby we obtain

A,=—i(A/2)E'R exp(iAT /2) . @1
Using 4{V'=0,4,, 4¥ =02 4, together with Eq. (3)
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with e=1, and noting that 4$¥ =0 [14], the normalized
vector  potential  through second  order is
A=(A+ A )exp(if)+c.c. which, using Egs. (5), (8),
(11), and (21), becomes
A=Q,R(£)1—iAQ,E /2)exp[i (AT /2+6)]+c.c.
~Q,R (& )exp{i[A(T—Q,£")/2+ 0]} +c.c.
=Q,R (& )exp[i (KZ —QT)]+c.c., (22)
where we have used 1—iAQ,§ /2~exp(—iAQ,E'/2),

which is valid through second order in Q,. The normal-
ized wave number K and frequency () are given by

K=1-AQ}/2, (23)
Q=Q[1-AQ;(Q+02)/20Q]
~1+Q2/2—A0%/2, (24)

where Eq. (24) has been evaluated through second order
in Q, using the expansions Qo—(l+92)1/2—1+(22 /2
+ -+ and Qo=(1+Q})"!?=1— 92/2+ . It may
be verified that Q and K given by Eqs (23) and (24) satis-
fy the linear dispersion relation (6) through second order
in Q,. It is evident from Egs. (23) and (24) that the wave
number and frequency are shifted from their linear values
by an amount proportional to QIZ,A, which is a nonlinear
effect because the solitary wave amplitude is proportional
to Q,, according to Eq. (22). Moreover, the wave-
number and frequency shifts are larger for solitary waves
whose envelopes have more oscillations (larger N) be-
cause, as in evident from Table I, their eigenvalues A are
larger. In spite of the frequency and wave-number shifts,
Egs. (23) and (24) yield a normalized phase velocity
vp=Q/K=1+Q,12, /2, which is the linear value of the
normalized phase velocity ), through second order. Be-
cause Eqgs. (5), (8), and (22) show that the pulse envelope
travels with the linear group velocity v, =Qy=~1 —Qf, /2,
the normalized group and phase velocities satisfy

v,=1, (25)

Vglp

4
which is valid through order 9.2 The result that the
phase and group velocities through order 02 are un-
changed from their linear values can be understood from
the linear dispersion relation (6) which shows that a
wave-number shift of order 92 as in Eq. (23), produces a
phase and group-velocity shlft of order 94 This implies
that in order to investigate any modlﬁcatlons of the
group or phase velocities from their linear values within
the framework of the perturbation expansion used here, it
would be necessary to carry it out through order 04

In the related investigation of Kozlov, L1tvak and
Surorov [12] two basic restrictions are imposed at the
outset. The first is that the solitary wave envelope is a
function of a single variable z —v, . This appears to be in
disagreement with the expansion assumed in Eq. (3),
where A;™(&,7) represents the mth-order contribution
to the envelope of the /th harmonic. Since Egs. (11) and
(21) show that A{" and A{» are functions of both
&'« (z —v,t) and 7' <, they do not satisfy the first condi-

tion in Ref. [12]. However, by absorbing the exponential
part of the 7" and £’ dependence of 4"+ 4 into the
carrier exp(if), one obtains a redefined carrier
exp[i(KZ —QT)] and envelope Q,R(£’) as shown in
Eq. (22), which does indeed satisfy the first condition of
Ref. [12]. The second basic restriction of Ref. [12] is that
Uyl =¢2, which, according to Eq. (25), is also satisfied by
our solutions. Thus, it is interesting that, in the weakly
nonlinear case treated here, it is not necessary to sepa-
rately impose the two basic restrictions of Ref. [12] be-
cause they emerge as consequences of the analysis.

III. SOLITARY WAVES FOR N >>1

When N >>1, Figs. 1 and 2 show that R, varies rapidly
compared with ®,. Under this condition, an approxi-
mate solution of Eq. (12) is the WKB solution given by
(15]

R, =Cy¥~Ysin [ [ j’w“zdg'—sz/z : 26)

where Cy is an arbitrary constant, and
vY=¢,—A, 27

which must satisfy the condition
% 172
f \I/ d&'=Q2N —1)r/2, N=12,3,..., (28)
where ¥ vamshes at the turning points +£; defined by

W(+E5)=0. (29)

Equation (26) is valid inside and not too near the turning
points. Since W is still to be determined, the locations of
the turning points are unknown at this point. In order to
obtain &, Cy, and ¥ self-consistently, Eq. (26) is inserted
into Eq. (13) with the result

Wep+W=(C} /29" %) —A, (30)

where the rapidly varying part of R? has been neglected
because its contribution to ¥ is small. Multiplying Eq.
(30) by W, and integrating, one obtains

(¥)?/2+G(¥)=K , 31)
where
G(V)=W2/2—C3V'2+ AV , (32)

and K is an arbitrary constant. Equation (31) is of the
same form as the energy conservation equation governing
a particle with ‘“energy” K, “position” ¥, moving in a
“potential” G with “time” &'. The “potential” G (¥) is
shown in Fig. 3 from which it is evident that, in order to
obtain a solution ¥ which vanishes at turning points, it is
necessary that the ‘“energy” K =0. Furthermore, with
K =0, Fig. 3 shows that ¥ has its maximum value ¥,
when G vanishes, i.e., G(¥,)=0, whereby Eq. (32) yields
the self-consistent relationship between the constants Cy
and ¥, as

Cr=W3"2/2+A¥Y? . (33)
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G(¥)

FIG. 3. Pseudopotential for solitary waves with N >>1.

From Fig. 2 and Table I it can be verified that, for large
N,

A<<V¥y/2 . (34)

Therefore, it is good approximation to neglect the term
involving A in Eq. (33). Using Eq. (33) together with (34),
one obtains from Eq. (31)

’— Yo —1/40\y3/2 _\y3/2\—1/2
£ fww (W32 —w3/2)~12qp (35)

which, with the substitution x =(‘I’/‘I’0)3/ 4 can be in-
tegrated with the result

W=V, cos*3(3¢' /4)=D,—A=D, . (36)

Equation (36) gives the turning point locations (where ¥
vanishes) as

+E=127/3, 37)

which agree closely with the locations obtained from Fig.
2 and Table I for large N. The constant ¥, can be deter-
mined by substituting Eq. (36) into Eq. (28), which yields

w2 [ 02”/3cos2/3(3§' /4)dE =(2N — 1) /4 . (38)
With the evaluation of the integral [16], Eq. (38) gives

Yo=K,(N—1)*, (39)
where

K, =[T%1/3)/2"°*1(2/3)?=1.11, (40)

and T is the gamma function. The function ¥ is now
completely determined, and R, is determined from Eqgs.
(26), (33), and (36) with the result

R,=R,sin [fofwmdgu—zvn/z : @1
R, =(K,/2)YAN —1/2)cos™/3(3¢' /4) . (42)

Equations (36) and (41) are good approximations inside

and not too near the turning points. The eigenvalue A
can be determined by examining ®, and R, near and to
the right of the turning point £;,. Near the turning point

& [15],
R =—Cym'2ST1OAI[S (& — &)1 , 43)

where S denotes the (unknown) magnitude of the slope of
¥ or ®, at &, given by

and Ai is the Airy function [17]. Thus, near the turning
point, R; given by Eq. (26) connects smoothly onto R,
given by Eq. (43). Also, the solution of Eq. (13) can be
written in the form

D, (&)= f;d;'R%(g“)sin(g“—g') , 45)
whose derivative is
@2;(§r)=_fglwdé—uR%(é—u)cos(é—n_é-r) . (46)

Evaluating Egs. (45) and (46) at the turning point &;, and
using @,(£5)=A, @,(£5)= —S, we obtain

A= [ “dx Risin(x)= [ “dx xR}, 47)
S= fowdx Ricos(x)~ fowdx R?, (48)

where x =& —&;. The right-hand members of Egs. (47)
and (48) follow from the observation that, to the right of
the turning point, R% decays in a distance x <<1, as is
evident from Fig. 1. Because of the rapid decay of R? to
the right of the turning point, the largest contribution to
the integrals in Eqgs. (47) and (48) come from the region
near the turning point where Eq. (43) is assumed to be
valid. Thus, Egs. (47) and (48) become approximately

A=(7rcfv/s“3)fo""Ai2<s“3x)x dx , (49)
s=(1rc§,/s“3)fO“’AiZ(s‘”x)dx ) (50)

The two Egs. (49) and (50) in the two unknowns A and S
are shown in the Appendix to yield

A=0.197(N —1)5/3 (51)

Table I shows that A is very closely proportional to
(N—1)%5 as predicted by Eq. (51), but that the
coefficient 0.197 in Eq. (51) is in error by about 40%.
This error arises because ¥, is not truly linearly depen-
dent on £’ to the right of the turning point, as is evident
in Fig. 2. Because of this, Eq. (43), which is based on the
assumption of a linear dependence of ®,, is not an accu-
rate approximation in the integrals of Egs. (49) and (50).
It should be noted, however, that, because A <<¥,, the
error in A does not result in a significant error in
®,=W+ A, except near the turning points where ¥ given
by Eq. (36) is already inaccurate because of the WKB ap-
proximation. Indeed, Fig. 4 shows that, for N =9, ®, ob-
tained from Egs. (36) and (51) is a very good approxima-
tion to the numerical solution except very near the turn-
ing point. Similarly, Fig. 5 shows that, for N =9, Eq. (41)
is also a good approximation for R, except very near the
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FIG. 4. For N =9, a comparison of the normalized scalar po-
tential @, from numerical integration of Eqgs. (12) and (13) (solid
curve) with the approximate analytical result (dashed curve) ob-
tained from ®,=W¥+ A, where ¥ and A are given by Egs. (36)
and (51).

turning point. Moreover, it is evident from a comparison
with the numerical solutions (not shown here) that, even
for N =2, the approximate expressions for ®, and R, de-
rived here are remarkably accurate.

Using Eq. (41), the vector potential given by Eq. (22)
becomes

A=Q,R,(&)expliay)—explia_)]/2i +c.c., (52)
where
aiziff(q>2—A)‘/2dg'+Kz—QT¢N7/2 . (53)

Thus, for large N, the vector potential is composed of two
traveling waves with local frequencies and wave numbers
given by

15 T T T

Ri(¢)

1% 0.5 1 15 2 25

€ = ky(z — vt)

FIG. 5. For N =9, a comparison of the normalized vector-
potential envelope R; from numerical integration of Eqs. (12)
and (13) (solid curve) with the approximate analytical result
given by Eq. (41) (dashed curve).
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"y — aai _ ’ ’ 1/2
QuE)=— - =0EQ, QO —A]2,  (54)
da
Ki(é"):a—zi=Kiﬂp[d>2(§’)—A]1/2 , (55)

where §'=Q,(Z —QuT), and K and Q are given by Egs.
(23) and (24). It is instructive to consider the phases a,
frequencies ., and wave numbers K. in the group-
velocity frame. Using the Lorentz transformation
Z=y(Z+iT), T=y(T+Q,Z), y=[(1—(Qy)?*]"'/?
=$,/Q,, one obtains, in terms of the group-velocity
frame coordinate Z and time 7,

. =£(02/Q) [ (@£~ A)2dZ
—Q,(1-AQ; /2)TFNw/2, (56)

where §'=(Qf, /Q¢)Z. Thus, the local frequencies and
wave numbers in the group-velocity frame are

~ da ‘

Q,=— aif =0,(1-AQ2/2)=~Q,(1—AQ2)/?
(57

5 o 0% 2 , 12

Ro(g)=—— =40} /00)[6) A (58)

Equations (57) and (58) show that, in the group-velocity
frame, the two traveling waves have identical frequencies
but equal and opposite wave numbers, i.e., the vector po-
tential consists of two oppositely traveling waves of equal
amplitude. Moreover, the frequency is a constant
whereas the wave numbers depend only on the spatial
coordinate Z (because of the Z dependence of ®,), with
the largest wave-number magnitude occurring at the
center (Z =0) of the pulse. Because of the Doppler shift,
the frequencies and wave numbers in the laboratory
frame are dependent on both Z and T, as shown by Egs.
(54) and (55). Thus, the waves are considerably simpler
when viewed in the group-velocity frame.

These solutions valid for large N can be related to the
nonlinear dispersion relation which is

22 2(1—02
V2 =K2+02(1-02,), (59)

where the relation n/y =1 —Qf, ®, has been used. Using
the Lorentz transformation Q=y(Q+QuK),
K =y(K+Q4Q), y=Q,/Q,, it can be shown that Eq.
(59) also applies in the group-velocity frame,

Q2+K2+Q2(1—Q5®,) . (60)

Inserting the frequency Q given by Eq. (57) into the non-
linear dispersion relation (60), and solving for K, one ob-
tains I?=iQ§(<I>2—A)1/2 to lowest order in Q,, which
agrees with Eq. (58) if we use the lowest-order approxi-
mation Qy,=~1. Therefore, it has been shown that the fre-
quency and wave numbers given by Eqgs. (57) and (58), as
obtained from the approximate solution valid for large N,
satisfy the nonlinear dispersion relation (60). Because of
this, the nonlinear dispersion relation is useful to inter-
pret the properties of the solution. In particular, Egs.
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(59) or (60) show that the normalized plasma frequency
Q, is modified to &,=Q,(1—Q2®,)'”%. This effect is
produced by the combination of density modification due
to the nonlinear generation of the longitudinal plasma
wave and the nonlinear relativistic electron mass in-
crease. Thus, a wave with a frequency { in the group-
velocity frame propagates only if 4>{,. Because Eq.
(57) shows that both waves comprising the solitary wave
have a frequency Q=Q,(1—Q}A)'?, it follows that
these waves propagate only if ®,> A, which corresponds
to the region between the two turning points. In the re-
gions outside the turning points, where ®, <A, the waves
are purely evanescent, and decay exponentially. Thus,
the nonlinear coupling of the electromagnetic pulse to the
longitudinal plasma wave, whose scalar potential ®, pro-
duces a modified plasma frequency ﬁp which is smaller in
regions of larger ®,, creates a “cavity” between the two
turning points in which the electromagnetic wave is
trapped. Stated differently, the nonlinearly generated
longitudinal plasma wave creates a region in which the
local plasma frequency (< n/y) is depressed. Since the
electromagnetic wave can propagate only in regions were
the local plasma frequency is below the wave frequency,
it can be confined in this trough of depressed n /y. Thus,
the solitary wave solutions shown in Fig. 1 can be inter-
preted simply as eigenvalue solutions of the electromag-
netic field in the bounded underdense trough between the
two cutoff points at which the wave and plasma frequen-
cies coincide.

Finally, it should be recognized that, although the
solutions presented in this section are valid for large N,
an upper limit on N does exist because a basic assumption
of the perturbation theory on which the present analysis
is based [14] is the condition k,/ >>1, where [ is the scale
length on which the pulse envelope varies. From Fig. 1,
it is evident that [ ~(Nk,) ! for which the condition
kol >>1 becomes N <<Q,;fza)o/wp.

IV. SUMMARY AND CONCLUSIONS

In summary, the properties of one-dimensional, linear-
ly polarized, weakly nonlinear, electromagnetic solitary
waves in a plasma are examined, based on a perturbation
expansion in the small parameter e€~Q,=w,/koc
~w,/0y<<1. As in the strongly nonlinear case [12,13],
the solitary waves are obtained from the eigenvalues and
eigenfunctions of a system of two coupled equations.
Contrary to the strongly nonlinearly case, however, the
governing equations are much simpler, and their solu-
tions result in the following general properties of these
weakly nonlinear solitary waves. The N =1 case, where
N denotes the number of half-cycles of the vector-
potential envelope, is the only solitary wave whose width
is large compared with the plasma wavelength, but is a
true wakeless solitary wave only for vanishing amplitude.
The solitary waves with N =2 all have widths compara-
ble to the plasma wavelength, and are increasingly oscil-
latory with increasing N. The normalized vector-
potential envelope and scalar potential are obtained by
multiplying the universal curves in Figs. 1 and 2 by Q,
and 012,, respectively. Thus, the vector- and scalar poten-
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tial amplitudes of each solitary wave have discrete values
which are proportional to Q, and QIZ,, respectively. The
interaction of the laser pulse with the plasma produces
nonlinear frequency and wave-number shifts given in
Egs. (23) and (24). Through second order in Q2, the
group and phase velocities are shown to satisfy v,v, =c2

Equations (36) and (41) give simple analytic expressions
for the scalar potential ®, and the vector-potential en-
velope R for N >>1. Moreover, Eq. (52) shows that, be-
tween the turning points, the solitary wave for N >>1 can
be considered to consist of the sum of two traveling
waves with different local wave numbers and frequencies
which are dependent on both Z and 7. When viewed in
the group-velocity frame, however, these two traveling
waves have identical constant frequencies but equal and
opposite local wave numbers which depend only on the
spatial coordinate. Furthermore, these waves are trapped
between the two turning points at which the nonlinearly
modified local plasma frequency is equal to the wave fre-
quency.
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APPENDIX: DERIVATION OF EQ. (51)
Letting y =S!/3x, Egs. (49) and (50) become

A=(wC}/S) [ “APpy dy (A1)

§=(aCi/s*) [ " APy . (A2)

To evaluate the integrals in Egs. (A1) and (A2), we use
the differential equation for w (y)=Ai%(y), which is [17]

(A3)

Integrating Eq. (A3) between the limits O and o, and us-
ing integration by parts, one obtains

w,, —4yw, —2w =0 .

S wdy =w,0)2=[AIOF . (A4)

Similarly, multiplying Eq. (A3) by y and integrating, one
obtains
S wy dy=—w,(00/6=—Ai(0AI(0)/3.  (A5)

Using Eqgs. (A4) and (A5) together with [17]
Ai(0)=3"2/3/T(2/3) and Ai'(0)=—3"13/I'(1/3), Egs.
(A1) and (A2) become

A=mC} /9ST(1/3)I'(2/3) ,
S =7C%/3?/38*°*T%(1/3) .

(A6)
(A7)

Eliminating S from Egs. (A6) and (A7) and using Eqgs.
(33) and (39), we obtain

2T /3N -1 |'7°
AT | T ’ A

which, with numerical values inserted, yields Eq. (51).
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